References
Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., … Arslan, R. (2017). Rmarkdown: Dynamic documents for r. Retrieved from https://CRAN.R-project.org/package=rmarkdown
AlMuhayfith, F. E., Alzaid, A. A., & Omair, M. A. (2016). On bivariate poisson regression models. Journal of King Saud University - Science, 28(2), 178–189. https://doi.org/10.1016/j.jksus.2015.09.003
Altun, Y., Johnson, M., & Hofmann, T. (2003). Investigating loss functions and optimization methods for discriminative learning of label sequences. In Proceedings of the 2003 conference on empirical methods in natural language processing (pp. 145–152). Association for Computational Linguistics.
Betancourt, M. (2016). Diagnosing suboptimal cotangent disintegrations in hamiltonian monte carlo. Retrieved from https://arxiv.org/abs/1604.00695
Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo. Retrieved from https://arxiv.org/abs/1701.02434
Brooks, S., & Gelman, A. (1997). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434–455.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models (1st ed.). Cambridge, England: Cambridge University Press.
Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton, FL: CRC Press.
Griffiths, R., & Milne, R. (1978). A class of bivariate poisson processes. Journal of Multivariate Analysis, 8(3), 380–395. https://doi.org/10.1016/0047-259X(78)90061-1
Grolemund, G. (2016, November). Extracting Data From the Web Part 2. Retrieved from https://www.rstudio.com/resources/webinars/extracting-data-from-the-web-part-2/
Grolemund, G., Spinu, V., & Wickham, H. (2016). Lubridate: Make dealing with dates a little easier. Retrieved from https://CRAN.R-project.org/package=lubridate
Groll, A., Kneib, T., Mayr, A., & Schauberger, G. (2016). Who’s the favourite? A bivariate poisson model for the uefa european football championship 2016. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-29028-8
Guo, J., Gabry, J., & Goodrich, B. (2017). Rstan: R interface to stan. Retrieved from https://CRAN.R-project.org/package=rstan
Hoffman, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15, 1351–1381.
Johnson, P. E. (2016). PortableParallelSeeds: Allow replication of simulations on parallel and serial computers. Retrieved from https://CRAN.R-project.org/package=portableParallelSeeds
Karlis, D., & Ntzoufras, I. (2003). Analysis of sports data by using bivariate poisson models. The Statistician, 52, 381–393.
Karlis, D., & Ntzoufras, I. (2005). Bivariate poisson and diagonal inflated bivariate poisson regression models in r. Journal of Statistical Software, 14(10), 1–17.
Kawamura, K. (1973). The structure of bivariate poisson distribution. Kodai Math. Sem. Rep., 25(2), 246–256. https://doi.org/10.2996/kmj/1138846776
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Roy, N., & McCallum, A. (2001). Toward optimal active learning through monte carlo estimation of error reduction. In International conference on machine learning (pp. 441–448). Williamstown: International Machine Learning Society.
Schloerke, B., Crowley, J., Cook, D., Briatte, F., Marbach, M., Thoen, E., … Larmarange, J. (2016). GGally: Extension to ’ggplot2’. Retrieved from https://CRAN.R-project.org/package=GGally
Stan Development Team. (2016a). Brief guide to stan’s warnings. Retrieved from http://mc-stan.org/misc/warnings.html
Stan Development Team. (2016b). RStan: The r interface to stan. Retrieved from https://cran.r-project.org/web/packages/rstan/vignettes/rstan.html
Stan Development Team. (2016c). Stan modeling language: User’s guide and reference manual. Retrieved from http://mc-stan.org/documentation/
Whitaker, G. (2011, May). The bivariate poisson distribution and its applications to football (PhD thesis). Newcastle University.
Wickham, H. (2016a). Plyr: Tools for splitting, applying and combining data. Retrieved from https://CRAN.R-project.org/package=plyr
Wickham, H. (2016b). Purrr: Functional programming tools. Retrieved from https://CRAN.R-project.org/package=purrr
Wickham, H. (2016c). Rvest: Easily harvest (scrape) web pages. Retrieved from https://CRAN.R-project.org/package=rvest
Wickham, H. (2016d). Scales: Scale functions for visualization. Retrieved from https://CRAN.R-project.org/package=scales
Wickham, H. (2017). Tidyr: Easily tidy data with ’spread()’ and ’gather()’ functions. Retrieved from https://CRAN.R-project.org/package=tidyr
Wickham, H., & Chang, W. (2016). Ggplot2: Create elegant data visualisations using the grammar of graphics. Retrieved from https://CRAN.R-project.org/package=ggplot2
Wickham, H., & Francois, R. (2016). Dplyr: A grammar of data manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
Wickham, H., & Grolemund, G. (2016). R for data science (1st ed.). Sebastopol, California: O’Reilly. Retrieved from http://r4ds.had.co.nz/
Xie, Y. (2016a). Bookdown: Authoring books and technical documents with r markdown. Retrieved from https://github.com/rstudio/bookdown
Xie, Y. (2016b). DT: A wrapper of the javascript library ’datatables’. Retrieved from https://CRAN.R-project.org/package=DT
Xie, Y. (2016c). Knitr: A general-purpose package for dynamic report generation in r. Retrieved from http://yihui.name/knitr/